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Abstract. We present entropy stable schemes for the two-dimensional Euler equations on
unstructured grids. We develop a novel energy conservativescheme that is very simple to im-
plement, is computationally cheap and efficient. To allow for a correct dissipation of entropy in
the vicinity of shocks, a novel numerical diffusion operator of the Roe type is designed. The en-
tropy conservative scheme, together with this diffusion operator, gives an entropy stable scheme
for Euler equations on unstructured grids. Numerical experiments are presented to demon-
strate the robustness of the proposed schemes. Numerical experiments include the Sod shock
tube problem, vortex advection and flow past a NACA0012 airfoil.
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1 INTRODUCTION

We deal with systems of conservation laws in several space dimensions. For simplicity of
exposition, we consider the two-dimensional case in this paper. The generic form of systems of
conservation laws in two space dimensions is

Ut + f1(U)x + f2(U)y = 0 (1)

with U : Ω × R+ → R
m for someΩ ⊂ R

2. Defining f(U) = (f1(U), f2(U)), we say that
1 is hyperbolicif the matrix d

dU
(f(U) · n) hasm real eigenvalues for all nonzeron ∈ R

2. A
prototypical example for 1 are the Euler equations of gas dynamics:

U =




ρ

ρu

ρv

ρE


 , f1(U) =




ρu

ρu2 + p

ρuv

(ρE + p)u


 , f2(U) =




ρv

ρuv

ρv2 + p

(ρE + p)v


 . (2)

Let ρ, u, v, p, E, c andM denote the density, velocity components, pressure, internal energy,
speed of sound and Mach number. For a perfect gas, the pressure, the speed of sound and the
Mach number are given by

p = (γ − 1)(ρE − 1

2
ρ(u2 + v2)), c =

√
γp

ρ
, M =

√
u2 + v2

c
. (3)

We denoteu = (u, v).

1.1 Entropy framework

The solutions of 1 may develop discontinuities in finite timewhen even the initial data is
smooth. Hence, solutions of 1 are sought in the sense of distributions. Additional admissibility
criteria need to be imposed to single out unique solutions. Such criteria, calledentropy condi-
tions, rely on the existence of a convex functionη and functionsq1, q2 such that the following
compatibility conditions hold:

q′1(U)⊤ = η′(U)⊤f
′
1(U), q′2(U)⊤ = η′(U)⊤f

′
2(U). (4)

It is straightforward to check using 4 thatsmoothsolutions of 1 satisfy an additional conserva-
tion law, the entropy identity

η(U)t + q1(U)x + q2(U)y = 0. (5)

However, entropy needs to be dissipated at shocks. Hence, the entropy identity 5 is replaced by
an entropy inequality,

η(U)t + q1(U)x + q2(U)y ≤ 0, (6)

that holds in the sense of distributions. The vectorV = η′(U) is termed as the vector ofentropy
variables. The entropy inequality 6 is integrated in space to yield thestability estimate

d

dt

∫

R2

η(U(x, y, t))dxdy ≤ 0. (7)

Given the strict convexity of the entropy function, the entropy framework through 7 provides an
a prioriL2 stability estimate for the mult-dimensional system 1.
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We illustrate the entropy framework for the Euler equations2. Define the standard logarith-
mic entropys := log(p) − γ log(ρ). Then the entropy function and entropy fluxes for the Euler
equations are given by

η(U) = − ρs

γ − 1
, q1(U) = − ρus

γ − 1
, q2(U) = − ρvs

γ − 1
. (8)

The entropy variables are

V =

(
γ − s

γ − 1
− ρ|u|2

p
,
ρu

p
,
ρv

p
, − ρ

p

)⊤

. (9)

1.1.1 Symmetrization:

The results of Godunov and Mock show that a hyperbolic system1 is symmetrizable if and
only if it has an entropy framework. A particularly revealing form of this symmetrization is
due to Barth [1]. The key to this symmetrized form is a theoremof [1] showing that for every
nonzeron ∈ R

2, there exist suitably scaled matrix of eigenvectorsRn of the matrix d
dU

(f(U)·n)
such that

RnR
⊤
n

= UV, (10)

with UV = U
′(V) being the change-of-variables matrix from the conserved variablesU to the

entropy variablesV. This identity is independent of the directionn, thus providing a natural
scaling for the eigenvectors. DenoteRk = Rek

, with ek being the unit vector in directionk, and
let Λk be the corresponding diagonal matrix of eigenvalues. Using10, we formally obtain

Ut + f1(U)x + f2(U)y = Ut + f
′
1(U)Ux + f

′
2(U)Uy,

= UVVt +R1Λ1R
−1
1 UVVx +R2Λ2R

−1
2 UVVy,

= UVVt +R1Λ1R
⊤
1 Vx +R2Λ2R

⊤
2 Vy.

As η is a convex function,UV is a symmetric positive definite matrix. Clearly the coefficient
matricesRkΛkR

⊤
k for k = 1, 2 are symmetric, implying that the conservation law 1 has the

symmetrized form
UVVt +R1Λ1R

⊤
1 Vx +R2Λ2R

⊤
2 Vy = 0. (11)

For the Euler equations with the aforementioned entropy function, the change of variables
matrix is given by

UV =




ρ ρu⊤ E

ρu ρuu
⊤ + pI ρHu

E ρHu
⊤ ρH2 − c2p

γ−1




where the specific enthalpy isH = c2

γ−1
+ |u|2

2
. The resulting scaled eigenvectors are

r1
n

=

√
ρ(γ − 1)

γ

(
n1, un1, vn1,

(u2 + v2)n1

2

)⊤

,

r2
n

=

√
ρ(γ − 1)

γ

(
0, − cn2√

γ − 1
,

cn1√
γ − 1

, − (vn1 − un2)c√
γ − 1

)⊤

,
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r3
n

=

√
ρ

2γ
(1, u+ cn1, v + cn2, H + c(un1 + vn2))

⊤
,

r4
n

=

√
ρ

2γ
(1, u− cn1, v − cn2, H − c(un1 + vn2))

⊤
. (12)

The diagonal matrix of eigenvalues is given by

Λn = diag(un1 + vn2, un1 + vn2, un1 + vn2 + c, un1 + vn2 − c). (13)

1.2 Aims and scope of the paper.

Numerical methods to discretize systems of conservation laws, such as the Euler equations,
have extensively developed in the last few decades. Of particular interest, are the finite volume
methods [5] and [6], where the computational domains is divided into control volumes and a
discrete (integral) version of the conservation law is imposed on each control volume. The
resulting numerical fluxes are then computed by using exact or approximate solutions of the
Riemann problem (in the normal direction) at each control volume interface.

It is highly desirable that a numerical scheme respects the entropy balance of the underlying
PDEs. In particular, entropy should be conserved if the solutions to the conservation law are
smooth and should be dissipated at shocks. However, standard numerical schemes, based on the
finite volume framework, may not respect this balance. To address this, Tadmor [8] devised a
framework for constructing finite difference approximations for systems of conservation laws in
one space dimensions. This framework is based on two ingredients: i) an entropy conservative
flux function and ii) numerical diffusion operators which dissipate entropy at shocks. The exis-
tence of entropy conservative fluxes was also shown in [8] anda set of explicit solutions were
obtained in [9]. More recent papers such as [7] for the Euler equations and [2] for the shallow
water equations. These explicit fluxes increase the computational efficiency of entropy conser-
vative schemes. Arbitrarily high-order entropy stable finite difference schemes are designed in
[3].

The main aim of the current paper is to extend the framework ofTadmor [8] to discretize
systems of conservation laws in several space dimensions, on unstructured grids. To this end,
we extend the notion of entropy conservative schemes to unstructured grids in two space dimen-
sions as well as introduce suitable numerical diffusion operators. Explicit formulas for the Euler
equations are provided. Numerical experiments (again for the Euler equations) are presented to
illustrate the robustness and efficiency of the proposed schemes.

2 Discretization

2.1 Mesh description

We assume thatΩ is a bounded polyhedral domain ofR
2. We introduce a conforming

triangulationTh in R
2, whereh is the maximal length of the edges inTh. For the primary grid

(see Figure 1), the nodes are the verticesai, indexed overi ∈ V, of the trianglesK ∈ Th. The
finite volume cells are the barycentric cellsCi, obtained by joining the midpointsMij of the
sides originating at nodeai to the centroidsGij of the triangles ofTh which meet atai (see
Figure 2).

In the sequel we use the following notation.

Notation 2.1 Letai, aj, ak be the three nodes defining a triangleK ∈ Th. Then
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• ai is theith vertex

• Mij is the midpoint of sideaiaj

• Ni is the set of vertices that are neighbors of nodeai

• |Ni| is the number of neighboring vertices toai

• Gij (j = 1, . . . , |Ni|) is the centroid of a triangle of whichai is a vertex

• Ci is the barycentric cell constructed aroundai

• eij = ∂Ci ∩ ∂Cj is the common face of neighboring cellsCi andCj

• ni = (nix , niy) is the outward normal vector to∂Ci (see Figure 4)

• n
1
ij ,n

2
ij are the normals of the two components ofeij (see Figure 3)

• U
n
i
∼= U(ai, t

n) is the nodal cell average values at timet = tn.

The union of all the barycentric cells constitutes a partition of the computational domainΩh:

Ωh =
nv⋃

i=1

Ci

wherenv is the number of vertices of the original finite element triangulationTh. For complete
details of the domain of computation for the NACA0012 airfoil in the 2D see Figure 5.

Let
nij =

∫

∂Ci∩∂Cj

n dσ = n
1
ij + n

2
ij

be the unit normal on the faceeij = GijGi,j+1 pointing out of the control volumeCi. The
normal vectorsn1

ij andn
2
ij are depicted in Figure 3 andnij in Figure 4. Note that we have

∑

j∈Ni

nij = 0. (14)

We denote the average and difference ofU across the edgeeij as

Uij :=
1

2
(Ui + Uj) , [[U]]ij := Uj − Ui,

and remark thatUij = Uji and[[U]]ij = −[[U]]ji.

i j
a a

a
k

Figure 1: Primary grid
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2.2 Semi-discrete finite volume scheme:

The space discretization method considered here is a vertexcentered finite volume formula-
tion. A conservative and consistant finite volume approximation of 1 is written

∂Uh

∂t
+

1

|Ci|
∑

j∈K(i)

F(Ui,Uj,nij) = 0. (15)

The numerical fluxFij = F (Ui,Uj,nij) is assumed to have the following properties:

(i) Consistency:
F(U,U,n) = f(U) · n

(ii) Conservation:
Fij = −Fji

for all j ∈ Ni.

3 Entropy conservative schemes

We aim to design a numerical flux such that the resulting numerical scheme 15 isentropy
conservativei.e, it satisfies a discrete version of the entropy identity 5. The concept of entropy
conservative schemes for systems of conservation laws was introduced by Tadmor in [8] for
Cartesian meshes. In this section we extend the notion of entropy conservative schemes to
unstructured meshes.

Definition 3.1 A numerical flux̃Fij = F(Ui,Uj,nij) is entropy conservativeif it is of the form
F̃ij = F̃

1
ijn

1
ij + F̃

2
ijn

2
ij and the components satisfy the relations

[[V]]⊤ijF̃
k
ij = [[ψk]]ij k = 1, 2, (16)

whereψk(U) = V(U)⊤fk(U) − qk(U) denotes the entropy potential.

Theorem 3.2 Let F̃ be an entropy conservative flux. Then the approximate solutionsUi com-
puted by the finite volume scheme 15 with numerical fluxF̃ satisfies the discrete entropy identity

d

dt
η(Ui) +

1

|Ci|
∑

j∈Ni

Q̃ij = 0 (17)

i jij
a aM

G
ij

G
ij+1

Figure 2: Barycentric cells around nodesai,aj
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i jij

ij

ij

a aM

n

n

1

2

G ij

G
ij+1

Figure 3: Part of a boundary ofCi, eij = ∂Ci ∩ ∂Cj and the normal vectorsn1

ij andn
2

ij

i jij

ij ij
+

a aM

n n1 2

G
ij

G
ij+1

Figure 4: Part of a boundary ofCi, eij = ∂Ci ∩ ∂Cj and the normal vectornij

with numerical entropy flux

Q̃ij :=
2∑

k=1

nk
ij

(
V

⊤
ijF̃

k
ij − ψk

ij

)
. (18)

Proof. Multiplying 15 by the entropy variablesVi, we get

d

dt
η(Ui) = −

∑

j∈Ni

1

|Ci|
2∑

k=1

nk
ijV

⊤
i F̃

k
ij

= −
∑

j∈Ni

1

|Ci|
2∑

k=1

nk
ij

(
V

⊤
ijF̃

k
ij −

1

2
[[V]]⊤ijF̃

k
ij

)

= −
∑

j∈Ni

1

|Ci|
2∑

k=1

nk
ij

(
V

⊤
ijF̃

k
ij −

1

2
[[ψk]]ij

)

= −
∑

j∈Ni

1

|Ci|
2∑

k=1

nk
ij

(
V

⊤
ijF̃

k
ij − ψk

ij

)
,

where we have used the identity 14 and added
∑

j∈Ni

∑2
k=1

1
|Ci|
nk

ijψ
k
i = 0.

We note that the condition 16 provides a single algebraic equation form unknowns. In
general, it is not clear whether a solution of 16 exists. Furthermore, the solutions of 16 will
not be unique except for scalar equations. In [8], Tadmor showed the existence of at least one
solution of 16 for any system of conservation laws. Explicitsolutions were constructed in [9].
However, the entropy conservative fluxes of [9] are computationally expensive; see [2]. Instead,
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Figure 5: NACA0012 airfoil, Primary grid and barycentric cell Ci

we follow recent papers [2, 7] to obtain algebraically simple and computational inexpensive
solution of 16. For concreteness we consider the Euler equations of gas dynamics 2.

Denote byZ the so-called Roe parameter vector

Z =

√
ρ

p
=




1
u

v

p


 .

It is readily verified that

ρ = Z1Z4, p =
Z4

Z1
, u =

Z2

Z1
, v =

Z3

Z1
, m1 = ρu = Z2Z4, m2 = ρv = Z3Z4

Denoting bys = log(p) − γ log(ρ) the standard logarithmic entropy, we have

s = ln



Z
(1−γ)
4

Z
(1+γ)
1



 , η(U) =
−Z1Z4s

γ − 1
.

The entropy variables are

V =




γ−S
γ−1

− m2
1
+m2

2

2pρ
m1

p
m2

p

−ρ
p




=




γ
γ−1

+ ln(Z4) + (1+γ
1−γ

) lnZ1 − Z2
2
+Z2

3

2

Z1Z2

Z1Z3

−Z2
1



,

the entropy fluxes are

q1(U) =
−m1S

γ − 1
=

−Z2Z4S

γ − 1
, q2(U) =

−m2S

γ − 1
=

−Z3Z4S

γ − 1

8
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and the entropy potentials are

ψ1(U) = m1, ψ2(U) = m2.

Upon solving 16 we get the entropy conservative fluxes

F̃1 =




F̃
1
1

F̃
2
1

F̃
3
1

F̃
4
1




=




Z̄2Z
ln
4

Z̄4+F̃ 1,1Z̄2

Z̄1

Z̄2Z̄3Zln
2

Z̄1
γ+1

γ−1

1

Zln
1

F̃ 1
1
+Z̄2F̃ 2

1
+Z̄3F̃ 3

1

2Z̄1




and

F̃2 =




F̃
1
2

F̃
2
2

F̃
3
2

F̃
4
2




=




Z̄3Z
ln
4

Z̄2F̃ 1
2

Z̄1

Z̄4+F̃ 1
2
Z̄3

Z̄1
γ+1

γ−1

1

Zln
1

F̃ 1
2
+Z̄2F̃ 2

2
+Z̄3F̃ 3

2

2Z̄1




.

Here,aln is the logarithmic mean defined as

aln =
[[a]]

[[log(a)]]

See [7] for further details.

4 Entropy stable schemes for Euler equations

4.1 Numerical diffusion operators

The entropy conservative schemes lead to unphysical oscillations near shocks. We need to
add numerical diffusion to eliminate these oscillations. Following the procedure of [2], we
consider numerical flux functions

Fij = F̃ij −
1

2
Dij[[V]]ij. (19)

Here,F̃ is an entropy conservative flux andD is any symmetric positive definite matrix with
Dij = Dji. The fluxFij is consistent becauseUi = Uj implies thatFij = F̃ij−0 = f(Ui)·nij ,
and it is conservative becauseFji = F̃ji − 1

2
Dji

(
−[[V]]ij

)
= −

(
F̃ij − 1

2
Dij [[V]]ij

)
= −Fij .

The scheme with numerical flux 19 is entropy stable by the following lemma.

Lemma 4.1 Let the numerical flux in the finite volume scheme 15 be defined by 19. Then the
approximate solutionsUi computed by the scheme 15 satisfy the discrete entropy inequality

d

dt
η(Ui) +

∑

j∈Ni

1

|Ci|
Qij ≤ 0, (20)

with numerical entropy fluxQ given by

Qij = Q̃ij −
1

2
V

⊤
ijDij[[V]]ij,

9
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whereQ̃ is defined in 18. Summing overi ∈ V, we obtain the entropy bound

d

dt

∑

i∈V

η(Ui) ≤ 0. (21)

PoofMultiplying the finite volume formulation 15 byVi we get

d

dt
η(Ui) = −

∑

j∈Ni

1

|Ci|
(
V

⊤
i F̃ij −

1

2
V

⊤
i Dij [[V]]ij

)

= −
∑

j∈Ni

1

|Ci|
(
Q̃ij −

1

2

(
V

⊤
ij −

1

2
[[V]]⊤ij

)
Dij [[V]]ij

)

= −
∑

j∈Ni

1

|Ci|
Qij −

1

4

∑

j∈Ni

1

|Ci|
[[V]]⊤ijDij [[V]]ij

≤ −
∑

j∈Ni

1

|Ci|
Qij ,

thus proving 20.

4.2 Specifying the numerical diffusion matrix.

Following [2, 3], we choose the following numerical diffusion matrix:

Dij = Rnij
|Λnij

|R⊤
nij
. (22)

Here,Λn andRn are the matrix of eigenvalues and eigenvectors as defined in 10. The matrices
can be evaluated at the average stateUij .

5 Numerical experiments

5.1 Vortex advection

We start testing the scheme on a smooth test case for the two-dimensional Euler equations.
This test case involves long time simulation. The initial data is set in terms of velocityu andv,
the temperatureθ = p

ρ
and entropys = log p− γ log ρ:

u = 1 − (y − yc)φ(r), v = 1 − (x− xc)φ(r), θ = 1 − γ − 1

2γ
φ(r)2

wherer =
√

(x− xc)2 + (y − yc)2 with (xc, yc) being the initial center of the vortex, and

φ(r) = ǫeα(1−τ2), τ =
r

rc

We set the free parameters,ǫ = 5
2π

, α = 1
2
, rc = 1 and(xc, yc) = (5, 5). The exact solution of

this initial value problem is simplyU(x, y, t) = U(x − t, y − t, 0). In other words, the initial
vortex centered at(xc, yc) is advected diagonally with a velocity of 1 in thex- andy-directions.
The computational domain and initial data is shown in Figure6. We compute up toT = 30 on
a mesh with 40836 vertices. Figures 7,8 show the computed density at the timet = 30 using
the entropy conservative scheme and the standard Roe scheme. Figure 9 shows that there is
a significant gain in accuracy using the entropy conservative scheme as compared to the Roe
scheme.

10
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Y

X

Z

4.947e-01

6.210e-01

7.473e-01

8.737e-01

1.000e+00
density

Figure 6: Computational domain with initial data, with slices in z-direction

Y

X

Z

4.942e-01
6.253e-01
7.565e-01
8.876e-01
1.019e+00

density

Figure 7: Entropy conservative scheme,ρ at t = 30 with slices in z-direction.

Y

X

Z

4.942e-01
6.253e-01
7.565e-01
8.876e-01
1.019e+00

density

Figure 8: Roe schemeρ at t = 30 with slices in z-direction.

5.2 Sod shock tube in two dimensions

We consider the Euler Equations in the computational domainΩ = [0, 1] × [0, 0.1] with
Riemann initial data

(ρ,m1, m2, l)left = (1, 0, 0, 2.5) 0 < x < 0.5

(ρ,m1, m2, l)right = (0.125, 0, 0, 0.25) 0.5 < x < 1.

The initial discontinuity breaks into a left-going rarefaction wave, a right-going shock and a
right-going contact discontinuity. The computed solutionwith the entropy conservative scheme
at timeT = 1.4 on a mesh of 20136 points, shown in Figures 10 and 11. The computed solution
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exact solution

x

de
ns

ity

40 45 50 55
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1.2 Entropy conservative scheme

Roe scheme

Figure 9: A one-dimensional cut for the vortex advection problem/ Entropy conservative scheme vs Roe scheme,
ρ at t = 30. Exact solution in red line.

x
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ity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 10: Density for the 2-D Sod shock tube problem. Entropy conservative scheme.

with this scheme has significant oscillations. This is to expected as the scheme preserves the en-
tropy (see figure 13), whereas the entropy of the exact solution has to be dissipated at the shock
wave. The failure to dissipative this entropy results in oscillations at the mesh scale. To remove
these oscillations, we use the entropy stable scheme developed in the previous section. Now,
the entropy is dissipated as shown in figure 14. Furthermore,the scheme resolves the shock
wave, the contact discontinuity and the rarefaction wave without any spurious oscillations, see
Figure 12. A comparison with the standard Roe scheme is also shown in figure 12. The total
entropy

∑
i∈V |Ci|η(U)i versus time is shown in Figures 13 and 14.

x

xv
el

oc
ity

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

Figure 11: Velocity for the 2-D Sod shock tube problem. Entropy conservative scheme.
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Figure 12: Solutions for the 2-D Sod shock tube problem computed with the entropy stable scheme and the Roe
scheme.
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Figure 13: Total entropy vs. time, (Entropy conservative scheme)
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Figure 14: Total entropy vs. time, (Entropy stable conservative scheme)
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Figure 15: Adapted mesh

5.3 Simulation of transonic flows around a NACA 0012 airofoil

We consider a transonic flow around a NACA0012 at angle of attack α = 1o and Mach
number at infinityM∞ = 0.85. We have selected this problem since it is a quite classical and
significant test problem for Euler solvers [4]. Figure 15 shows the final adapted triangulation
near the profile used to solve the test problem. The mesh contains 14930 points. Figures 16,
17 show the pressure and density lines for the entropy stablescheme and Roe scheme. We can
observe the similar shocks locations obtained with the two schemes implying a small difference
in pressure distributions shown in Figure 18.
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Figure 16: Iso-pressure and density lines,( entropy stablescheme)
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Figure 17: Iso-pressure and density lines, (Roe scheme)
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Figure 18: Pressure distribution (entropy stable scheme vs. Roe scheme)

6 Conclusion

We have presented in this paper a new formulation of entropy conservative and entropy stable
schemes on unstructured grids for the stable numerical solution of Euler equations modelling
transonic, supersonic and hypersonic flows. With these methods we can simulate 3-D flows
around complex geometries such as complete aircraft.
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